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Rearrangements of ligands attached at given sites of a certain skeleton may be classified according 
to two principles: symmetry equivalence, where the same permutation of objects is related to symmetry 
equivalent sites and rotational equivalence, where the resulting isomers differ just by their orientation. 
The combination of both these principles leads to a classification wanted by experimentalists. This 
latter classification is shown to be correlated to double cosets, which easily allow to find the rear- 
rangements belonging to a class in a formal way and to enumerate the distinguishable classes for any 
given problem. 

Umordnungen yon Liganden, die auf vorgegebene Pl~itze eines bestimmten Molektilgeriistes 
verteilt sind, k/Snnen nach zwei Prinzipien klassifiziert werden: Symmetrie~iquivalenz, gekennzeichnet 
durch dieselbe Permutation yon Objekten bezogen auf symmetrieiiquivalente Geriistpl~itze, und 
Rotations~iquivalenz, dadurch charakterisiert, dab die entstehenden Isomere sich nur durch ihre 
Orientierung unterscheiden. Die Kombination dieser beiden Prinzipien fiihrt zu einer Klassifikation, 
die zur Interpretation yon Experimenten ben6tigt wird. Es wird gezeigt, dab diese Klassifikation auf 
Doppelnebenklassen ftihrt, mit denen die Umordnungen einer Klasse auf formale Weise leicht zu 
finden sind und die Anzahl der unterscheidbaren Klassen fiir jedes vorgegebene Problem bestimmt 
werden kann. 

Double Cosets and Configurations 

In  a previous paper  [1], it has been shown that double  cosets of pe rmuta t ion  
groups are the na tura l  algebraic analogue of configurat ions of permuta t iona l  
isomers. 

The representa t ion of configurat ions by classes of permutat ions,  and  formulas 
for their enumera t ion ,  have been discussed on the basis of the concept "ordered 
molecule", which implies an artificial dis t inct ion between dis t r ibut ions of n 
numbered  l igands on n numbered  sites of a rigid molecular  skeleton. The set of all 
ordered molecules can be classified into subsets such that each contains  all 
those ordered molecules which cannot  be dist inguished if we ignore the numbers  
assigned to ligands and  sites and  disregard the or ienta t ion  and  conformat ion  
of a molecule. This classification is associated with a classification of l igand 
permuta t ions  acting on a reference ordered molecule. It has been shown [1] 
that these classes are the so-called double  cosets of two subgroups g[ and  ~3 of 
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the group 6 ,  of all permutations, ~I and ~3 being chosen according to the special 
classification one has in mind. N contains all permutations representing rotations 
of the whole molecule and may contain further permutations representing inner 
rotations or some other rearrangements which one assumes to take place inde- 
pendently of the attached ligands within the characteristic time of the experiment. 
9A expresses exclusively properties of the skeleton. ~3 contains all permutations 
of ligands of the same kind or ligands that are not distinguished by the experiment 
concerned and refers to the sites occupied by like ligands in the reference isomer. 
~3 expresses exclusively properties of the ligands. Since the concept configuration 
used in chemistry should be defined by the kind of experiment considered, we 
may speak of 9.1~3-configurations. 

A double coset 9Ax~3 consists of all permutations which can be written as 
, z x j  where ~ is a given element of ~,, ~ and ~ are any elements respectively 
of 9.1 and ~3. 
The classification of the set 6 ,  thus obtained can be expressed as a sum of sets 

6 ,  = 9.i~3 $ 9.Ix2 ~3 ~-... + 92xz~ (1) 

where + means the union of sets having no permutation in common. 
~I~3 consists of all permutations leading from the reference isomer to ordered 

molecules which cannot be distinguished from the reference isomer by the 
experiment concerned. The permutations of ~Ixi~3 with i # 1 lead to experi- 
mentally distinguishable classes of mutually non-distinguishable ordered mole- 
cules. Therefore the double cosets ~Ixi~3 or representative elements of them, 
e.g., the a:~ with xl  =~ (identity permutation) may be used as symbols for 
configurations of permutational isomers. 

The number of different configurations can be found by calculating the 
number z of double cosets. For this some formulas have been derived [1], which 
hold independently of the special type of groups we have been discussing for our 
purpose. We give just the one which we also want to use for the subsequent 
treatment of another problem. 

(la) 

Er is a class of conjugate elements of 6,.  I~,l, 19.II, [~31 and ]Er[ denote the number 
of elements of the groups 6, ,  9A, ~3 and of the class Er, and 19.1c~E~], N3~E~I 
designate the number of those elements belonging to the class E, which are con- 
tained in 9.I and ~3 respectively. The sum runs over all classes E,. 

Double Cosets and Modes 

A completely different classification problem will be shown to be soluble 
on a very similar basis also using double cosets. We refer again to rigid molecular 
skeletons with numbered sites occupied by ligands. A rearrangement of ligands 
on a given skeleton should be defined with reference to the numbered sites dis- 
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regarding the nature of the ligands which are rearranged and disregarding the 
special way in which the rearrangement takes place. 

If the skeleton has a certain symmetry, then there are rearrangements which 
effect different isomerisations but occur under precisely the same influence of the 
skeleton. They are related to different site numbers in a special way. Their cor- 
respondence is such that corresponding site numbers can be mapped into each 
other by a symmetry operation of the skeleton. Using rearrangements which 
correspond to symmetry operations of the skeleton we can transform a given 
rearrangement into a "symmetry equivalent" one. A symmetry-corresponding 
rearrangement followed by a given rearrangement followed again by the inverse 
of the first rearrangement leads to a rearrangement that is symmetry equivalent to 
the given one. Referring to the skeleton symmetry we will speak of the set of all 
rearrangements which are symmetry equivalent to a given one as of a rearrangement 
process. A process therefore does not imply the transition from a given molecule 
to a certain isomer but to a certain set of isomers. 

On the other hand, if we differentiate only those rearrangements which lead 
from a given distribution of ligands to different isomers we have to collect as 
being nondistinguishable all those rearrangements which can be split into a 
given rearrangement followed by a rearrangement corresponding to a rotation. 
Such rearrangements may be called rotationally equivalent. Rotationally 
equivalent rearrangements lead to the same isomers. 

For a demonstration of the concepts introduced above we refer to the 
tetragonal bipyramid (D4h). The rearrangements corresponding to the permuta- 
tions (12), (23), (34), (14) are mutually symmetry equivalent while the one associated 
with (15) is not equivalent to any of these. The rearrangements belonging to (12) 
and (23) e.g. are related by the reflection (13) according to (13)(23)(13)= (12). 

E 

B 

F 

" '~ )D  i 5 C 

They are however not rotationally equivalent. 
On the other hand the rearrangements corresponding to (12) and (134) are 

not symmetry equivalent, yet they are rotationally equivalent as we have 
(1432) (134)= (12) where (1432) represents a rotation. 
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E 

E (134) 

D C 
(1432) ) 

D~I6 ~B B~I6A 

F F 

From the foregoing examples it is obvious that we have to concern ourselves 
with the group 6 ,  of all permutat ions on the n sites of a given skeleton and two 
subgroups 15 and 9I of 6 , .  

We denote by 15 the group of permutat ions corresponding to the symmetry 
operations of the skeleton and by ~l the subgroup of 15 containing all permutations 
which correspond to proper  rotations. 

N is a subgroup of index two in 15 if the skeleton is achiral and all molecules 
with n different ligands are chiral. If  a is any permutat ion of 15 not belonging to N, 
i.e. a permutat ion which represents an improper  rotation or a reflection, 

15 = ~I -i- o'9.I = ~l ~ 9.1cr 

is the decomposit ion of 15 into the subgroup 9.I and its coset. 
The remaining case N = 15 may be regarded as a special situation for which o- 

does not exist. It designates two types of molecular classes: either the skeleton 
is chiral and correspondingly all molecules are chiral (chirality order n; cf. [-2]) 
or the skeleton is achiral but reflections are represented by permutat ions which 
are also representative for rotations. In this case all molecules are achiral provided 
the ligands fulfill certain symmetry conditions (chirality order 0, e.g. benzene 
derivatives). 

The definition of symmetry and rotational equivalence reads now: 

Two rearrangements x and ~ are symmetry equivalent if ~ = y ~  -1 where 
is a permutat ion of 15. 

Two rearrangements a: and y are rotationally equivalent if y = ~ c  where 
is a permutat ion of 9.I. 

Rearrangements belonging to the same rearrangement process therefore 
are of the form ~ v g -  1 with a given ~c and any y s 15. Such a class of permutations 
is called a subclass with respect to 15. The group 6 ,  decomposes into subclasses 
with respect to 15. Each of the subclasses represents a rearrangement process. 

In addition we note that a subclass with respect to 15, {ya:y -1} with any 
c 15 can be considered to consist of two subclasses with respect to ~l, { ~ -  1} 

and {ao-~v~-l~ - 1} with any ~ e 9.1 which are either identical or disjoint. 
Rotationally equivalent rearrangements are of the form ~ v  with a given ~c 

and any ~ e 9.I. Such a class of permutat ions is called a right coset of ~l. The group 
~ ,  decomposes into right cosets of ~I. Each of these cosets represents a class of 
rotationally equivalent rearrangements effecting the same isomerisation. 
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It is a field of current interest to investigate the occurrence and probability 
of one-step rearrangement reactions as far as the influence of the skeleton is 
concerned, i.e. independently of the ligands varying over an appropriate assort- 
ment. Correspondingly one does not want to differentiate symmetry equivalent 
rearrangements. Using experiments which measure the isomerisations effected by 
such reactions one cannot distinguish rotationally equivalent rearrangements. 
For these experiments therefore distinguishable sets of rearrangements consist 
of symmetry equivalent rearrangements and all those rotationally equivalent to 
them. We call such a set a m o d e -  a word which has been proposed by Musher [3]. 

Gielen and Vanlautem [4] to our knowledge were the first to give a classification 
according to the idea of modes for special cases (tetrahedron, square, trigonal 
bipyramid, octahedron) by writing down properly classified permutations. 
Essentially the same thing has been done by Musher [3]. But no general concept 
for this classification has been developed, applicable to more complicated cases. 
We shall give an algebraic concept of modes that allows one to work out the 
classification in any case whatever and to calculate the number of distinguishable 
classes, as we shall see below. 

According to the mode concept as developed above we define: 

Two rearrangements x and g are mode equivalent i fy  is rotationally equivalent 
to x or to a rearrangement which is symmetry equivalent to x, i.e. ifN = ~ x ~ -  1 
where e and ~ are permutat ions of 9.1 and (5 respectively. 

The class 9Jl(x) of rearrangements which are mode equivalent to  x is the mode 
to which x belongs. It can be given as follows" 

~[J~(5~) = {gb~Z X ] 1} with any ~ e 9A and any ] e (5. 

93~(x) is composed of two double cosets 

9.I x 9.1 = { ~ x d }  with any ~, ~ '  e 92[ 

9.1ax~r-19.1 = { ~ x a -  l~z'} with any ~, ~ '  e ~i 

which are either disjoint or identical. Therefore 9Jl(~) can be expressed as 

~ ( ~ )  = 9 ~  9.1 w 9.Io-~ o-- 1 9.1 

where w denotes the set theoretic union. If o- does not exist, gJl(x) reduces to 

~ ( ~ )  = 9.1~ 9.I. 

Two modes ~JJ~(z) and 9Jl(y) are either identical - if the rearrangements x and 
are mode equ iva l en t -  or disjoint - if ~c and ~ are mode inequivalent. Therefore 
the set of all rearrangements, | decomposes into modes 921l~ = g)l(z~): 

~n  = -~[ + (~s ~[ k..J .~10"5~2 0"- 1 .~D 4 �9 �9 " 4 (~s z,~[ kfl .~0";2:: zO'- 1 ~l" ) (2) 

where 9)l I = ~JJl(~) = ~I is the mode of the identity rearrangement consisting of all 
rotations. The identity permutat ion e and x2, ..., xz are representative permuta-  
tions of the classes 9J11, 9)1 2 . . . . .  9)l z. They can be used to characterize distinct 
modes. 
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It should be explained that 
1. 9.1xig.1 and 9 . Iaxia- l~I  may be identical or disjoint. Therefore it can happen 

that each class 93l,. reduces to a double coset 9.Ixig.I (trigonal bipyramid). 
2. The sets 92[ x i 9.1u 9.1 a x~ a - 1 ~I and g[ xi- 1 9.1 ~ ~l axe- 1 a - 1 ~I likewise are either 

identical or disjoint. Because they consist of mutually inverse elements, either 
these two classes are selfinverse or each of them contains the inverse elements 
of the other one. Sometimes e.g. for the trigonal bipyramid and the octahedron 
all classes 9~ are selfinverse, but generally this is not true. 

3. The sets ~xir  9 . I a ~ ( r - ~  and 9.1axioAw 9Xccia-121 are also either identical 
or disjoint. If they are disjoint they may be called enantiomeric modes because 
their rearrangements lead from a given molecule to sets of isomers which are 
related to each other by enantiomerism. 
For  experiments which do not distinguish enantiomers e.g. NMR-meas- 

urements, enantiomeric modes must be regarded as belonging to one class which 
we shall call a racemic mode. A classification of rearrangements given by Meakin, 
Muetterties et al. [-5] for the octahedron is in agreement with the idea of racemic 
modes. 

The set of rearrangements belonging to a racemic mode 93F(x) is by definition 
the set theoretic union 

9.Ix9.1~ 9 . Iaxa-  1 9.1 w 9.1ax ~ u  9.Ix a -  l~I.  

Recalling the decomposition of 6 into the subgroup 91 and its coset we see that 
the ~ ( x )  are simply double cosets: 

~ ( ~ ) =  6 ~ 6 .  

The set of all rearrangements, ~, ,  decomposes into racemic modes according to 

~ n =  ( ~  (~2(~i + "" + [~z(.) (~. (3) 

T h e  N u m b e r  o f  M o d e s  

Having given a well defined group theoretic class concept we turn to the 
problem of enumerating these classes without the need of elaborating them. 

We use formula (la) for the number of double cosets ~I~gx, 9.I~v6, 6x9.I  and 
6 x 6  in the corresponding decompositions 

~, = 9~ + ~ ~i~ + ... 4- ~'z,9~, (h) 
~, = 9~6 + ~ 6  q-... + 9 ~ 2 6 ,  (B) 

% = 6 ~ - ~  6 ~ ' ~  $.. .  ~- 6~739~, (O 
~ , = 6 ~ -  .... " 6 x 2  6 + " "' ... + 6 ~ 4 6 ,  (D) 

zt - 19.1] 2 ~= 1 II~] 

Z2=Z3- -  19"III61 r=l [~rl 

I%1 ~ I~,n612 
z4=  1612~=1- 1~1 
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Using the decompos i t ion  15 = 96 q2 a96 and noting that  0-96 = 96a = 960-- t = a -  ~ 96 
we can write 

96 X 15 = 96 CZ:~ 96 t...) 96X 0"- 1 96 , 

15x96 = 96 x 96 w 96 a x 96 , 

(5 ~:Z~ (5 ~- 96 ~27. 96 k..) 960.X 96k..) 96X0.- 196k.) 960.X0-- 1 96. 

One can easily verify that  for each quadruple  96x96, 960. x 9.1, 9 6 x a -  1 9.1, 96a ~ a -  1 96 
one of the following five condi t ions is fullfilled 

~) 96x96, 96ax96,  96x0. -196 and 96a~c0.-196 are all identical. 
fl) 96x96 and 960 .xa-196  as well as 96a~c96 and -9s are  identical. 
7) 96~v96 and 96ax96 as well as 9 6 ~ a -  196 and 96ax0 . -196  are identical. 
6) 96x96 and 96xo--196 as well as 960.~v96 and 960.x0.- 196 are identical. 
e) 96x96, 96ax96, 96x~r-196 and 9 6 a x a - 1 9 6  are pairwise disjoint. 

Assuming that  in the decompos i t ion  (A) there occur z~ quadruples  of  type 
a, z~ of type fl, z~ of type 7, z~ of type c5 and z~ of type e, we can infer from the 
decompos i t ions  (B), (C), (D) and (2) the equat ions  

z = z~ + 2z~ + z~ + z~ + 2z~ 

z 1 = z~ + 2z~ + 2z~ + 2z~ + 4z~ 

z 2 = z~ + z~ + z~ + 2z~ + 2z~ 

z 3 = z~ + z~ + 2z~ + z~ + 2z~ 

z 4 = z~ + zt~ + z~ + z~ + z~ 

which are solved to give 
z = z  1 + 2 z 4 - z 2 - z 3 .  

Using formula  (la)  for zl, z4 and z2 = z3 we get the count ing formula  for z 

(2a) 
~ =  19611(5--1 r=l  ]" I~,l 

For  the use of  fo rmula  (2a) it should be ment ioned  that  if pe rmuta t ions  are 
writ ten in the fo rm of products  of disjoint cycles it is very simple to find the numbers  
1~/~961 and [@~n o-961 by inspection, while the orders [g~l are given by 

]~rl --- n! 
K~ri ! U2r2 ! ... n~'r,! 

where q ,  ..., r, denote  the numbers  of cycles of length 1, 2, ..., n. 
F o r m u l a  (1 a) for 96 = ~3 = (5 gives the number  z (r) of racemic modes  

k 
le.n1512 z{~)= ~ (3a) 

1(512 ,=1 I~l  

A formula  for the n u m b e r  z (p) of processes which is equal  to the number  of sub- 
classes with respect to the group  ffi can be given wi thout  p roo f  

I%1 L 
z (p ) -  ~ (4a) 

1(51 ,=~ Ierf 
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Examples 
The following table gives the number z of modes for eleven examples 

Skeleton Number Symmetry of 
of sites the skeleton 

Number of 
modes (z) 

~ 2  4" distorted 
tetrahedron 4 CEv 

G trigonal 
"4 $ pyramid 

2 

C3v 

4- 
trigonal 

,t 3 bipyramid D3h 

5- 
tetragonal 
pyramid C4v 7 

4. ~ ]  G trigonal 
4 ~ 3 prism 

D3h 20 

tetragonal 
a $ bipyramid D4h 13 

a4 pentagonal 
,I 4- pyramid Csv 24 

octahedron Oh 

tetragonal 
prism 

D4h 446 

10 cube Oh 78 

11 @ icosahedron 12 Jh 68.384 
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In the second table we have written down representative permutations for 
each mode of the first eight skeletons. The numbers in square brackets give the 
numbers of different isomers arising from any starting isomer through the various 
rearrangements belonging to any rearrangement process of the corresponding 
mode, provided the ligands are all different. 

1: (1) I l l ,  (12) [1], (13) [-4], (123) [4], (13)(24) [1], (1324) [1] 

2: (1) [-1],(12) [1],(14) [3],(124) [3] 

3: (1) [11, (12) [1], (14) [6], (124) [-6], (14)(25) [31, (1425) [3] 

4: (1) [1], (13) [1], (15) [,41, (12) [-41, (125) [8], (12)(35) [-8], (135) [41 

5: (1) I l l ,  (12)(45) [1], (12) [6], (123) 1-21, (34) [-6], (12)(34) [12], (234) 1-121, (1432) [6], (1234) [,61, 
(1243) [6], (142) [-12], (124) [12], (14) [-3], (14)(23) [-61, (13)(45) [21, (1254) [6], (15)(34) [6], 
(1543) [61, (1345) [61, (14)(25) [-31 

6: (1) [11, (13) [1], (15) [8], (135) [8], (12) [41, (125) [16], (12)(35) [16], (15)(26) [8], (1526) [8], 
(15)(263) [81, (15)(236) [8], (15)(36) [2], (1536) [21 

7: (1) Eli, (12)(35) [11, (16) [5], (12) [,5], (126) [10], (12)(36) [101, (123) [5], (1236) [5], (1263) [101, 
(1362) [10], (13) [5], (136) [10], (13)(26) [5], (15)(36) [5], (135) [53, (1563) [103, (1365) [10], 
(1325) [11, (1523) [1], (13256) [5], (16523) [52, (13)(56) [10], (1356) I-5], (12)(356) [5] 

8: (1) [1],(13) [11,02) [12],(125) [81,(12)(35) [81 
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